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THE STRUCTURE OF E~ECTRO-~YDRODYN~IC DISCONTINUITIES 
PRODUCED BY CHARGED GRIDS * 

N.L. VASIL'EVA and L.T. CBBRNYI 

The two-dimensional steady flow of a gas with a unipolar charge is dis- 
cussed. Theparameterof e~@ctrO-hydrOdynaD3iC (EBD) interaction is assumed 
to be small so that the electric field does not affect the gas flow. A 
charged grid consisting of rectilinear wires at right angles to the plane 
of the flow is placed in the flow, the grid being the surface of disconti- 

nuity of the EHD parameters. 
The structureofsuch a discontinuity in the cases where the wires are 

charged positively or negatively, and the charges of adjacent wires have 

different signs is analysed. In each such case, the grid may be partially 
or totally penetrable for the ions, or not penetrable at all. The charge- 
current characteristics of the grid are found, and the magnitude of the 
charge forwhich thegrid becomes impenetrable is established. The relations 
which close the system of relations at a discontinuity are obtained. 

1, Consider the one-dimensional flow of a two-component medium which is a mixture of gas 
and positive ions in the EBD-approximation, with a small interaction parameter. We direct the 
coordinate axis y along the flow velocity and assume that the electric field intensity has a 
single component parallel to the y-axis. Let the velocity of the medium v' be constant along 
the stream, and all other flow parameters depend on y only. In the cross-section t/ ==O we 
&ace a charged metal grid, perpendicular to the flow, which consists of parallel wires, and 
is sufficiently coarse so that, in practice, it does not affect the motion of the gas. 

It will be shown below that depending onthemaghitude and sign of the charge, the grid 
can be penetrable for ions partially or totally, or not penetrable at all. 

We shall denote by minus or plus the values of parameters directly in front of or behind 
the discontinuity. Let L, L,,, L,F be a typical geometric scale of the problem 
(for example, the distance of the grid from other bodies), and the typical lengths of the change 
in the strength of the field E, and the change in the volume density of the ion charges, g, 
in the flow regions in front of and behind the grid respectively. The parallel wires which 
form the grid are circular cylinders of radius 6, with a distance 1 between their axes 
satisfying the conditions min (L, L,,, L%,,)> I>& Then, generally speaking, the grid can 
be regarded as a surface of discontinuity of the flow's electric parameters. 

With these assumptions, the equations which describe the behaviour of electrodynamic 
quantities in the regions in front of and behind a discontinuity have the form 

j = p (0" .+ bE) = const, dE dy = 4nq (1.1) 

(see /l, 2/) where j is the density of the stream of ions, and b is the ion mobility, which 
should be constant. In addition, it is assumed that LQ~ (u" t bE) >B$ where D is the diffusion 
coefficient of the ions. The electrical parametersat the discontinuityare connected by the 
following relations (see /2/): 

E” - E- = 4n6, j’ - j- = - J, jf = qf (u” j bErt) (1.2) 

Here u is the surface charge density at the discontinuity, and J is the electric current 
density flowing to the grid as a result of the ion deposition. 

2. Let us look into the structure of the discontinuity described in the previous section. 
The values of-introduced represent the values of the field strength at infinity in front of 
andbehindthe grid. We direct the x-axis of the Cartesian system of coordinates 2 and y 
perpendicular tothe axes of the grid wires. Then all parameters of the EHD flow depend only 
on the coordinates 1: and y, and the flow of the medium is parallel to the (z, y) plane. The 
centre lines of the grid wires intersect the ;ty 
0, 1, 2,... 

plane at points with coordinates (& kL,O),k = 

Let US confine wmX?lVeS to the cases most frequently realized in practice, when the 
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inequalities 

hold. 
Then in the problem regarding the structure of the discontinuities of electric parameters 

caused by the grid we can ignore the volume charge of the ions and their diffusion. As a 
result, the relations 

&vE=O, cotE=O, divj=(b, j=q(v+bE) {‘.2) 

will hold; here Y +&E is the velocity of the ion motion. 
The field strength at infinity in front of and behind the grid can be written in the form 

E, = EP r 2nQ'l, E" = (E- f E-),2 (2.Z) 

where Q is the charge per unit length of one wire and u = Q,'l is the mean charge per unit of 
grid area. It is assumed here and below in Sections 3 and 4 that Q is the same for all wires. 

The case where the field produced by a coarse grid is such that it shows a marked influence 
on the ion motion, i.e. 

is of practical interest. 
In the vicinity of each grid wire, the estimate Eb- 2416 is valid for the field intensity 

& created by the electric charges on the wires. Since the grid is assumed to be fairly 
coarse, and this means tnat 6< t, it follows from the estimate of & above and from formula 
(2.4) that Eb>E4 Similarly,Eb>Es',where Ea' is the field strength around any one of the 
wires, caused by the other wires. Therefore, in the vicinity of eachwire, we can ignore the 
distortion of the outside field due to the electrostatic induction, and the field produced by 
all the other wires. Then the field outside the grid is identical with the field produced by 
a system of parallel infinitely thin threads with a linear charge density 9, situated on the 
axes of the wires and being in an external field of intensity E”. As a result, the solution 
of the first two equations of (2.2) has the form (see /3/i 

(in the complex representation an asterisk denotes complex conjugation). 
It follows from formula (2.4) that 
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Thus, in regions close to the grid wires where a pronounced perturbation of the Velocity 
of the hydrodynamic flow takes place, the effect of perturbation on the ion motion can generally 

be ignored, compared with the influence of the electric field. Consequently, henceforth, in 

the study of ion motion we shall assume that L‘Z L', -!- it>!, = IL.' r const. 
Let us introduce the complex velocity of the ions, V, and its complex potential ti I 



dW 2abQ 
‘V*=TI,-~iV,=-i(~~a+bE~)$-XCt~Z=--;iE-, x=7 
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(2.6) 

On integrating the above we obtain 

W = x Ln [C sin zexp(--i RezZ)], ReE = (v”+ bE”)ix (2.7) 

where C is an arbitrary constant, and ReE is the electric Reynolds number of the grid. 
From relation (2.2) and the definition of the complex potential W it folloWS that along 

the ion stream lines the density of the ion charge q and the imaginary part of the complex 
potentialIm%V,which is a function of the ion stream, remain constant. 

3. Consider the flow of a medium in the case where the grid is charged negatively (Q<O). 
The ion streamlines inthe band O<x< l/2,- a,< #< ac.are shown qualitatively in Fig.la, b. 
The streamlines in the band -1112 6x< 0, - oo< y< cm are obtained by mirror reflection with 
respect to the y-axis. The flow in the regions which are obtained by a shift rtli!. in the 

direction of the z-axis is similar to the flow in the band -112,<x< 112, - 00 < y< 00, 
since the grid is periodic. All ions whose streamlines in Fig.la are in region AO,B, reach 

the surfaces of wires and settle on them. We shall describe the region AU,3 as a region of 
ion capture by the grid in the band O,<x< 112, - m<y<cu. The ions whose streamlines lie 

to the right of the capture region AO,Bpass through the grid and go to infinity. Thus, in 
the case Shown in Fig.la, the grid is partially penetrable for ions. At the same time, q’ = 
q-, j- = q+ (u” + bE+) = q+ (u” + bE” + x) < j-. 

Let us obtain an equation for the streamline which passes through the critical point O1. 
The desired streamline consists of the half-line x=o,y>o, and the curve OIB. We equate 

to zero the imaginary part of the complex potential of the ion velocity (2.7); then 

C sinz exp (-i Rest)= C* sinz* esp (i Resz*) (3.1) 

Using the condition that 2 = inyll on that part of the streamlines which pass through 
the point O,, we obtain C* = -C. On solving Eq.(3.1) for y, and taking into account the 
definition z = r( (I + iy)/l we find the equation of the curve O&: 

(3.2) 

The coordinates ofthe critical point 0, at which the ion velocity is zero can be obtained 
from the above equation. They are 

The 
(3.2) or 
width is 

width of the region of ion capture at infinity, CC,, can be found either from Eq. 
from the condition that all ions from the region of capture settle on the wire. Its 

(3.4) 

When the absolute valueofthe charge on the wire increases, the critical point O1 at 
which the ion velocity is zero, is shifted upwards, and for Q = -l(uO+ bE”)/(2nb) it goes to 
infinity. From formula (3.4) we can obtain that in this case the region of ion capture is the 
whole band under consideration (a_ = 112). When the absolute value of the charge is increased 
further, the possible value of the ion velocity at infinity behind the grid becomes negative. 
When this value passes through zero at infinity, on the straight lines x= -&I2 two special 
points O,k (instead of one 0,) are formed, which are then shifted downwards. Using the 
condition that the ion velocities at the points 01* are zero, we find their coordinates 

The qualitative picture of the ion streamlines of such a flow is shown in Fig-lb. Above: 
the line 00, there are no ions, if there are none at infinity behind the grid. When the 
absolute value of the charge of the wire Q<O increases, point 01+ is shifted downwards and 
asQ-t-- oe.it conicides with thepoint (Z,I)). In the case shown in Fig. lb, the grid is 
impenetrable for the ions, with q+ = O,j+ = 0. 

4. Let us examine the flow of the medium when the grid is charged positively (Q>O}. 
Then the ion streamlines inthe band O,<x,< 112, -m < y< 00 are as illustrated in Fig.lc. 
The ions which come from infinity from below intersect the grid, pass round the shadow zone 
AO,B in which there are no ions, and go upwards to infinity. 
penetrable for the ions, and their density on the grid is zero. 

In this case the grid is fully 
It can be shown that the 

equation of the curve O# has the form (3.2) as before, where now Q>O. 
the coordinates of the critical point O1 

Correspondingly, 
are described by formula (3.3). For the values 

y>l, the eqution of the curve 0,B (3.2), is transformed approximately to the form 
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where z = 5~, is the straight line which limits the shadow zone at infinity; the quantitb 

a, is determined by (3.4) as before. It can be seen from formula (4.1) that .r~ rx, when 
Y>l. The width of the shadow zone at infinity in the band discussed is a,. We note 
that as the charge on the grid becomes greater, the width of the shadow zone increases, and 
for Q = 1 (v” $- bEc)8(2rrb) it equals 1,2. Here the grid totally repulses the ions, and becomes 
impenetrable, and as the condition at the discontinuity we must adopt Q- = (I. 

The value of c, for the shadow zone width at infinity was obtained under the assumption 
that the ion motion is directed by the outside electric field and is influenced by the friction 
force, and there is no diffusion of ions. In reality, the shadow zone at infinity vanished 
because of the diffusion of ions and the influence of the field createdbythem. We shall 
consider the case where the latter can be ignored. Clearly, this case is always realized for 
sufficiently small g. Below we give a quantitative formulation of this condition. 

Let the length of the shadow zone be 2;. The ions which intersect the grid reach a 
distance I,, 
distance 1, 

from the grid in the time z - &'(L.' -- !jE-). For the shadow zone to disappear at e 
from the grid, because of the diffusicn the icns shculd be displaced tc a dlsttirict. 

of the order of 

Since, in accordance with inequality fZ.1) we have Pe 5 /(I’- DE-)D’ ’ 1. fl-c.;! :G..‘: +,e 

cbtain 

l,, - I' [? - bE ) D -- PC 1 ; , I (4 .i ! 

Thus, the process of equalizing the -Jelocity and densitycf the ion charge occ';rs ir. :j:.. 
stages. First, at a distance --I the icn veiocity becomes practically equal to L'- - DE-. 

Here the shadow zone width differs little from its limit value x,, and the charge density 
inside the zone is close tc zero, and outside it equals q-. Then at a distance of the crder 

of I> 1.3 I, because of diffusion, an equalization of the charge density cf the ions across 
the band under consideration occurs, and the shadow zone disappears. Taking into account 
that Pe _> 1, this diffusion process is approximately described, under the condition that 

4nq1, < E-) , by the relations 

q = q-. ci, <2:< 12. y = 1; 
Q = 0, 0 5:; I < ?,. y = I; 
aq dx = 0. 2-7~ 0. 182. y =_ I 

The last two relations in (4.4) fol' ,ow from the symmetry and periodici::/ 
The solution of problem (4.4) has the form 

(see /4/j. 
Hence it follows that for y 2 I, we have q z? q- (1 - 2a,!z) E q- , that is the ion charge 

becomes practically constant at a distance I, from the grid. At the same time the density of 

the ion stream i- also ceases to depend on .T, and the relation j' = j- = const is satisfied. 
Let us estimate the length of the shadow zone I,' when it disappears under the influence 

of the electric field created by the ions. Suppose that E' is the value of the field strength 
projection on a plane perpendicular to the stream, i.e. on the grid plane. Obviously, 

Hence, and from expression (4.3) for l9 there follows the condition D/(&rbq) > I”: if it 

is satisfied we have i9'> I,, and, therefore, the process of disappearance of the shadow zone 

is determined by ion diffusion. 
In the cases shown in Fig. 1, the charge-current characteristics of the grid have the form 

(‘, x -7 0 

J~l--j+=$=~-=, _ ,r-22xq-. -(V”-LCEO! <%<O 

, q (r - bE’-xx). y. .< _ (l.’ L bf?) 

5. Consider the flow of a medium when neighbouring wires of the grid have charges cf the 
same absolute value Q>~J, but of opposite sign. Let the wires whose axes intersect the 
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ZY plane at points with coordinates (+2kZ,O), k= 0, i. 2,..., be charged positively, and those 
whose axes intersect the ZY plane at points with coordinates (f(2k+ 1)Z,Oi be charged negatively. 
We shall consider the flow of the medium in the band O<t-<I. --m<y<o3. The flow in the 

band --IQz<O,-CQ<Y<C-J is obtained by mirror reflection in the y-axis. The flow in the 

regions obtained by a shift of &2kl in the direction of the z-axis is similar to the flow 

in the band -Z<ZQI, - CO<Y<W because the grid is periodic. 
In the approximation described in Section 2, the electric field strength in the flow is 

determined by the formula 

(see /3/. 
The complex ion velocity V and its complex potential W are 

I" = I', - il’,, = - i (L.~ + bE’) i & 

c t&exp(-&,Z) ( 1 C=const 

The qualitative picture of the ion streamlines in the band O< I< 2, - m<y<m is shown 
in Fig. 2a. The ions whose streamlines lie to the 

t 4 ! llc 

Fig. 2 

left of the line .401+ pass through the grid, bending round the shadow zone OO,B where there 
are no ions, and go to infinity. All ions whose streamlines lie to the right of the line AO,, 
reach the wires and settle on them. In the case shown in Fig. la, the grid with bipolar 
charges is partially penetrable by the ions. 

By the operation used in Sections 2 and 3 we obtain the equations of streamlines which 

pass through the critical points 0, and o,, lying on the straight lines Z= o and I= tl, and 
the coordinates of these points, 

Here a= 0. +I for the points 0, and O,* respectively. 
The width of the region of ion capture in the band discussed, from which the ions settle 

on the negatively charged wire, equals the width of the shadow zone which is formed behind the 
positively charged wire, and is found from the formula 

This formula, as was the corresponding fcrmula in Section 4, is obtained under the 
assumption that there is no ion diffusion. In reality, 
disappear axing tc. t?le ior. diffusion. 

the shadow zone at infinity will 
By the argument used in Section 4, we conclude that the 

process of eqtialiking the ion charge behind the grid is described by formula (4.5), in which 
we can repiace E’ and 1 by E” and 21 respectively. At the same time, in this case the 
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shadow zone width CL_ which occurs in Eq. (4.5) is determined by formula (5.1). At a distance 

% from the grid the density of the ion charge q becomes practically constant and equals 

q+ rr q- (I - a,/& 
The density of the ion stream j+ becomes constant,butunlike the case described in 

Section 4, some of the ions settle on the grid and, therefore, the relation I+ = q+ (~0~ bSci ( i- 
is satisfied. 

When the absolute valueofthe charge on the wires increases the critical point 0, shifts 
downwards, and the critical points O,* shift upwards. The width of the capture region and 
that of the shadow zone increase, and for Q = I($ + bE”)/(2nb) become equal to 1. At the same 
time the curves 0,B and AO,+merge, and one streamline, given by the equation 

passes the critical points O,, O,* 

The qualitative picture of the ionstreamlines of such a flow is shown in Fig. 2b. The 
grid becomes impenetrable for the ions and all of them settle on the negatively charged wires. 
Above the line &O1_ there are no ions, and therefore q-=j- = 0, 

Figure 2c shows the streamlines of the medium‘s flow when the absolute value of the 
charge on the grid wires is 0 > t(y” J_ bP)/(Znb). It can be seen in Fig.2~. that one line which 
in Fig. 2a passes through the critical points 0,, O,, splits again into two lines: 0,C and 

001,. There are no ions above the line 0,C. Consequently, in this case also the grid is 
impenetrable for the ions, and Q- zz j- = 0. 

In the cases shown in Fig.2, the charge-current characteristics have the form 

$2 / a-. U(r.<v”+bE” 
J -_= ,- _ ii 3 j- -T- = 

Iq- (1‘” + hE‘), x > (u” + hE'] 
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